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A Ginzburg-Landau treatment of ternary spinodal

decomposition
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Following the suggestion of Goryachev in seeking a formulation of binary spinodal
decomposition which better accords with the tenets of irreversible thermodynamics and
with the experimental and computational modelling record we have revised de Fontaine’s
ternary version of Cahn’s binary linearized theory. This modification was motivated by the
fact that his version with Bragg-Williams thermodynamics does not accommodate the
formulation of a differential initial value problem since the two 2× 2 coefficient matrices
cannot be simultaneously brought to the diagonal. In the time-dependent Ginzburg-Landau
representation suggested by Goryachev the corresponding matrices are proportionate,
abetting commutation and therefore simultaneous diagonalization well into the high
amplitude range of decomposition. This suggests the need for revision of ternary small
angle scattering theory. C© 2000 Kluwer Academic Publishers

1. Introduction
Early attempts at observing spinodal decomposition fo-
cussed on the ternary alloy Cu-Ni-Fe [1, 2, 3] so it
was highly appropriate that de Fontaine, an associate
of Hilliard and Cahn [4, 5], should in his thesis [6] have
explored a ternary generalization of Cahn’s theory of
binary spinodal decomposition [5]. De Fontaine’s con-
tribution was later expanded by Kirkaldy and Purdy [7],
Morral and Cahn [8], Kirkaldyet al. [9], and most re-
cently by Hoyt [10], who focussed on the completion
of the appropriate small angle scattering theory. On the
other hand, Kirkaldyet al. [9] found that a general for-
mulation of the initial value problem for ternary spin-
odal decomposition within de Fontaine’s formulation
does not appear to be possible. A Ginzburg-Landau
formulation overcomes this difficulty.

Since 1961, a large amount of binary scattering data
was accumulating, leading Binder [11] in a recent re-
view to state that for scattering functions in metals “the
hallmarks of the linearized Cahn theory (exponential
increase of intensity with time, time-independent inter-
section point ofS (Ek, t), maximum positionkm of S
(Ek, t) independent of time) are never found [11].” Fur-
thermore, during this decade, the proposition has arisen
in the physics literature that the Cahn theory is defec-
tive for irreversible thermodynamic reasons [12], sim-
ulations indicating that rather than the generatedt1/3

coarsening [13], it yields the samet1/2 behaviour as for
second order, order-disorder processes [14]. Goryachev
has therefore suggested that the appropriate concen-
tration (c) equation is the time- dependent Ginzburg-
Landau (TDGL) equation [12]

∂c

∂t
= −M

(
δF

δc
− µo

)
; F =

∫
V

f dV (1)

whereδF/δc is symbolic of the variational derivative,
M is a rate constant, andµo is a Lagrange Multiplier
chosen so as to assure off-symmetry solute conserva-
tion. For the same reason, the free energy densityf is to
be expressed in the usualevenGinzburg-Landau form
containing a gradient energy term. Kawasaki [15] has
made the crucial point that in accessing Equation 1 one
is dealing with a chemical reaction not an uphill diffu-
sion process. Clearly, this can be atomistically justified,
for metals and alloys quenched sufficiently below the
critical point will very rapidly reach a vacancy den-
sity which is not appreciably different than that for in-
cipient precipitates so the reaction between the highly
mobile vacancies and the unsaturated bonds will in the
linear early stages be essentially homogeneous. The
only changes from order-disorder will be correlated va-
cancy motions which sustain unmixing rather than or-
dered mixing and the possibility of induced coherency
strain effects [16]. The present paper is designed to give
credence to these binary considerations by demonst-
rating that the ternary initial value problemis capa-
ble of formulation only within the Ginzburg-Landau
representation.

2. The de Fontaine ternary formulation
For comparison purposes we briefly review Morral and
Cahn’s phrasing of the de Fontaine formulation [6, 8]
starting with the conjectured generalization of the Cahn
linearizedor low amplitude binary equation containing
the uphill second order term (D(1)< 0) and the downhill
fourth order gradient energy term (D(2)> 0), viz.,

∂c1

∂t
= D(1)

11∇2c1+ D(1)
12∇2c2− D(2)

11∇4c1− D(2)
12∇4c2

(2)

0022–2461 C© 2000 Kluwer Academic Publishers 1177



and

∂c2

∂t
= D(1)

21∇2c1+D(1)
22∇2c2− D(2)

21∇4c1− D(2)
22∇4c2

(3)

General Fourier solutions are constructed of the form

c1− c̄2 =
∑
β

[
α11 exp

(−β2D̃2t
)

cos(Eβ · Er + φ1(β))

+ α12 exp
(−β2D̃2t

)
cos(Eβ · Er + φ2(β))

]
(4)

and

c2− c̄2 =
∑
β

[
α21 exp

(−β2D̃1t
)

cos(Eβ · Er + φ1(β))

+ α22 exp
(−β2D̃2t

)
cos(Eβ · Er + φ2(β))

]
(5)

subject to

D̃1α11 = D11α11+ D12α21 (6)

D̃1α21 = D21α11+ D22α21 (7)

and

D̃2α12 = D11α12+ D12α22 (8)

D̃2α22 = D21α12+ D22α22 (9)

with

Dij = D(1)
ij + β2D(2)

ij (10)

Elimination of theα’s yields two eigenvalues̃D1(β) and
D̃2(β). It is suggested that the initial value problem can
be formulated in terms of

c0
1 − c̄1 =

∑
β

A0
1 cos(Eβ · Er + θ1(β)) (11)

and

c0
2 − c̄2 =

∑
β

A0
2 cos(Eβ · Er + θ2(β)) (12)

accessing four relations between theα’s,φ’s andθ ’s for
everyβ, a process which for reasons of excessive com-
plication is never actually accessed. It was apparently
this complication which discouraged Hoyt [10] from
seeking a rigorous evaluation of the structure functions
relevant to the analysis of low angle scattering. While
the de Fontaine arithmetic appears to be sound, it is not
at all clear that a physically meaningful initial condition
normally framed in the binary case via a Fourierinte-
gral can be framed as the Fourierseries(11) and (12).
As Hillert suggested in his original one-dimensional
model [17], one should be able to start with a conserva-
tive localized perturbation which has a Fourier integral

decomposition giving in the binary case a unique co-
efficient A(β), an approach subsequently verified by
Cahn [5]. In attempting to proceed in this way towards
an initial value solution of (2) and (3), Kirkaldyet al.
[9] discovered that this can only be done with sufficient
generality if de Fontaine’s constant matrices{D(1)} and
{D(2)} can simultaneously be brought to the diagonal.
They demonstrated that for this to obtain the matri-
ces must commute, with the sufficient corollaries that
either one of the matrices is diagonal or they are propor-
tionate. The explicit evaluation of the two matrices in
Onsagerdiffusionkinetics and Bragg-Williams ternary
mean field theory given in Ref. 9 indicates that these
conditions are met only in extreme and unlikely con-
figurations. Since the ternary physics, if correct, must
encompass an initial value problem of the Hillert class,
and since the generalization of the Cahn binary for-
mulation through Equations 2 and 3 may according
to Goryachev imply incorrect physics of irreversible
processes, we choose to seek an alternative. We will
now demonstrate that a Ginzburg-Landau structure in-
volving chemical reactionhas the required symmetry
and analytic capability in respect to the initial value
problem.

3. A Ginzburg-Landau ternary spinodal
structure

The early stage binary Ginzburg-Landau equation
which at symmetric stoichiometry omitting the cubic
term, valid up to normalized concentration amplitudes
of one half the spinodal values, is

∂c

∂t
= 2Mκ∇2c− 2Mαc; α < 0 (13)

where in terms of Bragg-Williams pair energies [18],
the gradient energy parameterκ = zNAa2[eAB−
(eAA+ eB B)/2]/2 and the enthalpic volume parameter
α= −Z NA(1− T/Tc)[eAB̄(eAA+ eB B)/2]/2. HereM
is a chemical rate constant,zandZ are surface and vol-
ume coordination numbers, respectively,a is the lattice
parameter andNA is Avogadro’s number. The periodic
solutions of these exhibit coarsening from time zero,
an absence of a fastest growing wavelength and no nu-
cleation barrier emerging from amplitudes beyond the
spinodes [12]. This generalizes to

∂c1

∂t
= 2M11κ11∇2c1+ 2M12κ12∇2c2

− 2M11α11c1− 2M12α12c2 (14)

and

∂c2

∂t
= 2M21κ21∇2c1+ 2M22κ22∇2c2

− 2M21α21c1− 2M22α22c2 (15)

where allc’s as in Equations 4 and 5 are understood
to be normalized to the mean. Note that since the lo-
cation of the spinodes is irrelevant in this formulation
the miscibility gap can always be symmetrized about
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a temperature-dependent line in the binary case and
a surfacec̄(T, c̄1, c̄2) in the ternary case. Accordingly
for the alloys at the averages̄c1 and c̄2 used to nor-
malizec1 andc2, Equations 14 and 15 are linear such
as to conserve solute following a conserved perturba-
tion. Lagrange Multipliers as anticipated by Goryachev
[12] need be entered only for off-symmetry alloys so-
defined. From the binary limit (13) and the ternary ther-
modynamic calculations of Kirkaldyet al. [9] using
Becker’s method for gradient energies [19] on the ad-
vice of Hillert [20], we can obtain the near neighbour
matrices in Ginzburg-Landau form,

{κ} = zNAa2 · 1
4

{
(2εAC − εAA− εCC) (εAC + εBC − εAB − εCC)

(εAC + εBC − εAB − εCC) (2εBC − εB B − εCC)

}
(16)

for an areal chemical reaction, and

{α} = −Z NA

(
1− T

Tc

)
· 1

4

{
(2εAC − εAA− εCC) (εAC + εBC − εAB − εCC)

(εAC + εBC − εAB − εCC) (2εBC − εB B − εCC)

}
(17)

for a volumetric chemical reaction. It is highly appro-
priate to our general thesis that the two sets of reac-
tion rate coefficients differ only in the geometric and
thermal factors. Note that on account of the assumed
symmetrization of the alloy relative to the critical point
composition that both{2Mκ} and {2Mα} turn out to
be symmetric since{M} is always symmetric{Onsager
Reciprocity}. The mean field Au (C) Ag(A) Cu (B)
phase diagram may be taken as representative [21]. Ac-
cordingly, since

{κ} ∝ {α} (18)

on the isotherm we have demonstrated that{2Mκ}
and {2Mα} can simultaneously be brought to the
diagonal on the isotherm and an initial value problem
accommodated.

4. Discussion
The two questions raised earlier in respect to solutions
of the de Fontaine formulation of the ternary problem
[6–9] must now be readdressed. Firstly, it is important
to specify how the solutions define scattering functions
which are to be compared with low angle X-ray or neu-
tron scattering experiments extending from the binary
results reviewed by Binder [11]. Secondly, there was an
intuitive consensus among interested researchers [7–9]
that an initial arbitrarily directed sub-critical compo-
sition fluctuation represented as a two-pronged arrow
on the Gibbs isotherm would in the linearized version
of the Cahn-de Fontaine theory spontaneously rotate
toward parallelism with a solute-conserving tie-line of
the phase diagram thus expressing an early time ap-
proach towards the equilibrium state. This proposition
cannot be sustained within the TDGL formulation for
the isothermal equilibration trend is now clearly vested

within the generalization of the cubic term dropped
from Equation 13 so as to define linearization. Thus,
as research in progress we must first specify how the
cubic terms are to be entered into Equations 14 and 15,
hopefully via the inclusion of a 2× 2 {β} matrix of
coefficients explicitly dependent on the{α} matrix
through the ternary phase diagram. At best, a computa-
tional problem of some complexity is necessarily to be
addressed.

The linearized problem for the early time scattering
functions as a modification of Hoyt’s contribution [10]
remains of interest. This should start with a generali-

zation to Equations 14 and 15 of Goryachev’s recipro-
cal space solutions of Equation 13 [12]. This problem
offers the prospect of a closed form representation.

For solid state systems, the effect of coherency strains
becomes important [5]. Equations 14 and 15, pertaining
to the ternary case, can be adapted by adding a matrix
{α′} to {α}. This follows from Cahn’s demonstration
that this is an enthalpic correction linear in normal-
ized c.

In summary, Goryachev has demonstrated that a bi-
nary spinodal formulation according to Equation 1, and
arranged to subsume solute conservation, incorporates
the beginning of coarsening at early times and is free of
a fastest growing wavenumber, so unlike the linearized
Cahn theory agrees in this respect with the observations
[11]. Our ternary development is consistent with this bi-
nary intelligence while demonstrating that the approach
to equilibration and subsequent self-similar coarsening
is predicated upon the cubic terms in the driving force
for advance of the reaction. The all-important ternary
scattering functions [10] which remain to be worked
out in both the linear and non-linear representations of
this formalism will undoubtedly reflect the same trends.
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